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Task-Level Knowledge

* Manual design of robot tasks remains a cumbersome work.

* Consider a knowledge base consisting a collection of gt
behavior-tree tasks. EEs

oO

A way to utilize task-level knowledge?
1. Query a desired task from the knowledge base?

A—=Q— G2

2. Enable machine learning on symbolic tasks?

Symbolic Numerical Machine
tasks form? learning
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Background: Embeddings

* Embedding: Mapping an en’iity into a fixed length vector.

document, word, sentence, node, waveform, ...(Entity2Vec)
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walking
, Graph Vector space
word embedding node embedding
Word2Vec, [Mikolov 2013] GNN, [Kipf 2016]

i:r—aos

KY TO 2022



Qur |dea: Behavior-Tree Embeddings

Knowledge base storing tasks Vector space
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Qur |dea: Behavior-Tree Embeddings

* Principle: In the vector space, similar tasks should Define
be close, while distinct tasks should be far away. similarity?

* Example:

_)
/\ Structural
: \ characteristics
N grasp cup fill water

T~ -+

pick knife cut cucumber grasp cup || pick knife Semantic
characteristics

pick knife || cut cucumber
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Problem Setting

* Given:
A behavior tree that produces a single task.
* Aim:
Encode it into a compact vector,
while preserving semantic and structural characteristics.

Word embedding Node aggregation
—
Two-stage S

approach:

Stage 1 Stage 2
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Two-Stage Approach: An Example

- Pre-trained word-embedding model on enormous corpora
- Adaptive to different nomenclatures

Stage 1 pick knife cut cucumber grasp cup fill water

Word \_Y_} \_T_/ \_1_1 \_Y_}
— Layer 1 embedding [I] |:l |:- .
U1

) U3 VU3 2
N | grasp cup ‘ ‘ fill water Layer 2
| pick knife ‘ | cut cucumber | Layer 3 Final emlI)eddmg
1 _ 2 12 p2
Stage 2 hi = AGG(hi, h3, h3) Layer 1
=il hi=AGGLR) M evs  h3ew,  Layer2
hi < vy h; < vy Layer 3

- Sum up the embeddings layer by layer:
hl— AGG({hi}1,vu € Ch(n)}), llayer, u child node
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Evaluation 1: Similarity Measure

Semantic similarity Structural similarity
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via embedding

Towards efficient retrieval and reusage of tasks in knowledge base

* Embeddings in all evaluations are 200-dimensional vectors
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Evaluation 2: Downstream ML Task

* Relatedness Prediction: A downstream machine learning task.

Machine learning

Relatedness
score

Predict a relatedness score '

Softmax
|
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Embedding
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Embedding Embedding
Symbolic tasks y—#\ u ’

Behavior Eehavior

Input a pair of behavior trees o ehai
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Evaluation 3: Knowledge Transfer

* Task-level knowledge transfer via vector arithmetic operations

N Source:

Sub-task embedding: Vec(Source_sub)

stack l Transfer
box
. Target:
attach Sub-task embedding: Vec(Target_sub)
label
| . 7 %
pick chop ' | remove fill :
knife pepperoni ! cap water : wrap olace
___________________ |
film board
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Evaluation 3: Knowledge Transfer

* Task-level knowledge transfer via vector arithmetic operations

Benefit from the modularity of behavior trees

stack

|

|

|

|

|

|

|

: - box Entire target task embedding: Vec(Target) =

| 1 1

: R S — —Vec(Source_sub) + —Vec(Target_sub)
: ! | | attach 6 6

| 17 [Label

: 1 : abe * é: relative position in the entire task (1 sibling node: /2; 2sibling nodes: /3)
| -=-=1 .

: pick chop i wrap place :

: knife pepperoni ! film board :

| |
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Conclusion

* We proposed a behavior-tree embedding approach:
- Convert symbolic task knowledge to numerical form
- A new approach to reuse task knowledge
- Enable machine learning on symbolic tasks

e Currently:
Work for behavior trees consisting of Action and Sequence nodes
In the future:
Extend to behavior trees consisting of more node types
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